论文标题

规范参与基础语言

Norm Participation Grounds Language

论文作者

Schlangen, David

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The striking recent advances in eliciting seemingly meaningful language behaviour from language-only machine learning models have only made more apparent, through the surfacing of clear limitations, the need to go beyond the language-only mode and to ground these models "in the world". Proposals for doing so vary in the details, but what unites them is that the solution is sought in the addition of non-linguistic data types such as images or video streams, while largely keeping the mode of learning constant. I propose a different, and more wide-ranging conception of how grounding should be understood: What grounds language is its normative nature. There are standards for doing things right, these standards are public and authoritative, while at the same time acceptance of authority can and must be disputed and negotiated, in interactions in which only bearers of normative status can rightfully participate. What grounds language, then, is the determined use that language users make of it, and what it is grounded in is the community of language users. I sketch this idea, and draw some conclusions for work on computational modelling of meaningful language use.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源