论文标题

使用深网的低维歧管上非参数非参数评估的样本复杂性

Sample Complexity of Nonparametric Off-Policy Evaluation on Low-Dimensional Manifolds using Deep Networks

论文作者

Ji, Xiang, Chen, Minshuo, Wang, Mengdi, Zhao, Tuo

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We consider the off-policy evaluation problem of reinforcement learning using deep convolutional neural networks. We analyze the deep fitted Q-evaluation method for estimating the expected cumulative reward of a target policy, when the data are generated from an unknown behavior policy. We show that, by choosing network size appropriately, one can leverage any low-dimensional manifold structure in the Markov decision process and obtain a sample-efficient estimator without suffering from the curse of high data ambient dimensionality. Specifically, we establish a sharp error bound for fitted Q-evaluation, which depends on the intrinsic dimension of the state-action space, the smoothness of Bellman operator, and a function class-restricted $χ^2$-divergence. It is noteworthy that the restricted $χ^2$-divergence measures the behavior and target policies' {\it mismatch in the function space}, which can be small even if the two policies are not close to each other in their tabular forms. We also develop a novel approximation result for convolutional neural networks in Q-function estimation. Numerical experiments are provided to support our theoretical analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源