论文标题
深神经网络的8位数值格式
8-bit Numerical Formats for Deep Neural Networks
论文作者
论文摘要
鉴于当前的机器学习体系结构规模和复杂性增加的趋势,确定提高模型培训的计算效率的新方法已变得至关重要。在这种情况下,我们解决了浮点与定点表示的优势,并提出了一项关于使用8位浮点数格式的深入研究,以进行激活,权重和梯度进行训练和推理。我们探讨了不同的位宽度对指数和显着指数偏差的影响。实验结果表明,这些低精度格式的合适选择可以更快地训练和减少功耗,而无需用于一系列深度学习模型的精确度,用于图像分类和语言处理。
Given the current trend of increasing size and complexity of machine learning architectures, it has become of critical importance to identify new approaches to improve the computational efficiency of model training. In this context, we address the advantages of floating-point over fixed-point representation, and present an in-depth study on the use of 8-bit floating-point number formats for activations, weights, and gradients for both training and inference. We explore the effect of different bit-widths for exponents and significands and different exponent biases. The experimental results demonstrate that a suitable choice of these low-precision formats enables faster training and reduced power consumption without any degradation in accuracy for a range of deep learning models for image classification and language processing.