论文标题
通过机器学习的智能电路设计和实施
Intelligent Circuit Design and Implementation with Machine Learning
论文作者
论文摘要
EDA Technologies的停滞源于不足的知识再利用。实际上,可能需要从头开始重复构建非常相似的仿真或优化结果。这激发了我对使用机器学习(ML)向EDA引入更多“智能”的研究,该研究探讨了基于先前数据的设计流中复杂的相关性。除了设计时间外,我还提出了ML解决方案,以通过在运行时协助电路管理来提高IC性能。在本文中,我提出了多个快速而准确的ML模型,这些模型涵盖了从寄存器转移级别(RTL)到签名的各种芯片设计阶段,解决了有关功率,时机,互连,IR下降,路由,路由和设计流量调整的主要芯片设计问题。针对RTL阶段,我提出了一个完全自动化的功率建模框架Apollo。它通过提取最相关的信号来构建准确的人均功率模型。该模型可以在芯片上进一步实施,用于运行时电源管理,并以前所未有的低硬件成本实施。针对门级网表,我将net2提交了置换后线长度的早期估计。它进一步实现了无实际物理设计信息的更准确的计时分析。针对电路布局,我提出了Routenet以进行早期路由性预测。作为第一个基于深度学习的途径估计器,后来的作品广泛采用了其中提出的某些功能萃取和模型设计原则。我还提出了PowerNet,以进行快速IR下降估计。它通过定制的CNN体系结构捕获有关电源分配的空间和时间信息。最后,除了针对单个设计步骤外,我还提出拳头以在逻辑合成和物理设计期间有效调整设计流程参数。
The stagnation of EDA technologies roots from insufficient knowledge reuse. In practice, very similar simulation or optimization results may need to be repeatedly constructed from scratch. This motivates my research on introducing more 'intelligence' to EDA with machine learning (ML), which explores complex correlations in design flows based on prior data. Besides design time, I also propose ML solutions to boost IC performance by assisting the circuit management at runtime. In this dissertation, I present multiple fast yet accurate ML models covering a wide range of chip design stages from the register-transfer level (RTL) to sign-off, solving primary chip-design problems about power, timing, interconnect, IR drop, routability, and design flow tuning. Targeting the RTL stage, I present APOLLO, a fully automated power modeling framework. It constructs an accurate per-cycle power model by extracting the most power-correlated signals. The model can be further implemented on chip for runtime power management with unprecedented low hardware costs. Targeting gate-level netlist, I present Net2 for early estimations on post-placement wirelength. It further enables more accurate timing analysis without actual physical design information. Targeting circuit layout, I present RouteNet for early routability prediction. As the first deep learning-based routability estimator, some feature-extraction and model-design principles proposed in it are widely adopted by later works. I also present PowerNet for fast IR drop estimation. It captures spatial and temporal information about power distribution with a customized CNN architecture. Last, besides targeting a single design step, I present FIST to efficiently tune design flow parameters during both logic synthesis and physical design.