论文标题

基于暹罗编码器的时空混合器,用于在CT扫描中肺结节的生长趋势预测

Siamese Encoder-based Spatial-Temporal Mixer for Growth Trend Prediction of Lung Nodules on CT Scans

论文作者

Fang, Jiansheng, Wang, Jingwen, Li, Anwei, Yan, Yuguang, Hou, Yonghe, Song, Chao, Liu, Hongbo, Liu, Jiang

论文摘要

在肺结节的管理中,我们希望根据其在计算机断层扫描(CT)扫描的直径变化方面预测结节演变,然后根据结节不断增长的趋势的预测结果提供后续建议。为了提高肺结节增长趋势预测的性能,与连续CT扫描中相同结节的变化进行比较至关重要。在此激励的情况下,我们筛选了4,666名受试者,并从国家肺筛查试验(NLST)数据集进行了两次以上的CT扫描,以组织一个名为NLSTT的时间数据集。在具体而言,我们首先根据注册的CT扫描检测和配对感兴趣的区域(ROI),涵盖相同的结节。之后,我们通过模型预测结节的纹理类别和直径大小。最后,我们根据直径的变化来注释每个结节的进化类别。基于构建的NLSTT数据集,我们建议一个暹罗编码器同时利用从连续的CT扫描中检测到的3D ROI的判别特征。然后,我们在新颖设计的空间搅拌机(STM)中,以利用连续3D ROI中同一结节的间隔变化,并捕获结节区域的空间依赖性和当前的3D ROI。根据临床诊断常规,我们采用层次损失来更多地关注生长的结节。我们有组织的数据集上的广泛实验证明了我们提出的方法的优势。我们还对内部数据集进行了实验,以将方法与熟练的临床医生进行比较,以评估我们方法的临床实用性。

In the management of lung nodules, we are desirable to predict nodule evolution in terms of its diameter variation on Computed Tomography (CT) scans and then provide a follow-up recommendation according to the predicted result of the growing trend of the nodule. In order to improve the performance of growth trend prediction for lung nodules, it is vital to compare the changes of the same nodule in consecutive CT scans. Motivated by this, we screened out 4,666 subjects with more than two consecutive CT scans from the National Lung Screening Trial (NLST) dataset to organize a temporal dataset called NLSTt. In specific, we first detect and pair regions of interest (ROIs) covering the same nodule based on registered CT scans. After that, we predict the texture category and diameter size of the nodules through models. Last, we annotate the evolution class of each nodule according to its changes in diameter. Based on the built NLSTt dataset, we propose a siamese encoder to simultaneously exploit the discriminative features of 3D ROIs detected from consecutive CT scans. Then we novelly design a spatial-temporal mixer (STM) to leverage the interval changes of the same nodule in sequential 3D ROIs and capture spatial dependencies of nodule regions and the current 3D ROI. According to the clinical diagnosis routine, we employ hierarchical loss to pay more attention to growing nodules. The extensive experiments on our organized dataset demonstrate the advantage of our proposed method. We also conduct experiments on an in-house dataset to evaluate the clinical utility of our method by comparing it against skilled clinicians.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源