论文标题

未来的人工智能工具和医学观点

Future Artificial Intelligence tools and perspectives in medicine

论文作者

Chaddad, Ahmad, Katib, Yousef, Hassan, Lama

论文摘要

审查的目的:人工智能(AI)在医疗应用中已广受欢迎,特别是作为计算机辅助诊断的临床支持工具。这些工具通常用于医学数据(即图像,分子数据,临床变量等),并使用统计和机器学习方法来衡量模型性能。在这篇综述中,我们总结并讨论了用于临床分析的最新放射线管道。最近的发现:目前,对癌症的管理有限,从人工智能中受益,主要与计算机辅助诊断有关,该诊断避免了活检分析,该分析带来了额外的风险和成本。大多数AI工具都是基于成像特征的,称为放射线分析,可以在非侵入性获得的成像数据中精炼成预测模型。这篇评论探讨了基于AI的放射线工具用于临床应用的进度,并简要说明了必要的技术步骤。基于深度学习技术解释新的放射素方法将解释新的放射组模型(深度放射线分析)如何从深度卷积神经网络中受益,并应用于有限的数据集。摘要:要考虑放射线算法,建议进一步的研究涉及在放射线模型中进行深入学习,并在各种癌症类型上进行其他验证步骤。

Purpose of review: Artificial intelligence (AI) has become popular in medical applications, specifically as a clinical support tool for computer-aided diagnosis. These tools are typically employed on medical data (i.e., image, molecular data, clinical variables, etc.) and used the statistical and machine learning methods to measure the model performance. In this review, we summarized and discussed the most recent radiomic pipeline used for clinical analysis. Recent findings:Currently, limited management of cancers benefits from artificial intelligence, mostly related to a computer-aided diagnosis that avoids a biopsy analysis that presents additional risks and costs. Most AI tools are based on imaging features, known as radiomic analysis that can be refined into predictive models in non-invasively acquired imaging data. This review explores the progress of AI-based radiomic tools for clinical applications with a brief description of necessary technical steps. Explaining new radiomic approaches based on deep learning techniques will explain how the new radiomic models (deep radiomic analysis) can benefit from deep convolutional neural networks and be applied on limited data sets. Summary: To consider the radiomic algorithms, further investigations are recommended to involve deep learning in radiomic models with additional validation steps on various cancer types.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源