论文标题
层次相似性学习用于混叠抑制图像超分辨率
Hierarchical Similarity Learning for Aliasing Suppression Image Super-Resolution
论文作者
论文摘要
作为一个严重的问题,近年来已经广泛研究了单图超分辨率(SISR)。 SISR的主要任务是恢复由退化程序造成的信息损失。根据Nyquist抽样理论,降解会导致混叠效应,并使从低分辨率(LR)图像恢复正确的纹理。实际上,自然图像中相邻斑块之间存在相关性和自相似性。本文考虑了自相似性,并提出了一个分层图像超分辨率网络(HSRNET)来抑制混叠的影响。我们从优化的角度考虑SISR问题,并根据半季节分裂(HQS)方法提出了迭代解决方案模式。为了先验探索本地图像的质地,我们设计了一个分层探索块(HEB)并进行性增加了接受场。此外,设计多级空间注意力(MSA)是为了获得相邻特征的关系并增强高频信息,这是视觉体验的关键作用。实验结果表明,与其他作品相比,HSRNET实现了更好的定量和视觉性能,并更有效地使别名。
As a highly ill-posed issue, single image super-resolution (SISR) has been widely investigated in recent years. The main task of SISR is to recover the information loss caused by the degradation procedure. According to the Nyquist sampling theory, the degradation leads to aliasing effect and makes it hard to restore the correct textures from low-resolution (LR) images. In practice, there are correlations and self-similarities among the adjacent patches in the natural images. This paper considers the self-similarity and proposes a hierarchical image super-resolution network (HSRNet) to suppress the influence of aliasing. We consider the SISR issue in the optimization perspective, and propose an iterative solution pattern based on the half-quadratic splitting (HQS) method. To explore the texture with local image prior, we design a hierarchical exploration block (HEB) and progressive increase the receptive field. Furthermore, multi-level spatial attention (MSA) is devised to obtain the relations of adjacent feature and enhance the high-frequency information, which acts as a crucial role for visual experience. Experimental result shows HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.