论文标题
IL-MCAM:一种互动学习和基于多通道注意机制的弱监督的结直肠组织病理学图像分类方法
IL-MCAM: An interactive learning and multi-channel attention mechanism-based weakly supervised colorectal histopathology image classification approach
论文作者
论文摘要
近年来,大肠癌已成为危害人类健康的最重要的疾病之一。深度学习方法对于结直肠组织病理学图像的分类越来越重要。但是,现有方法更多地关注使用计算机而不是人类计算机交互的端到端自动分类。在本文中,我们提出了一个IL-MCAM框架。它基于注意机制和互动学习。提出的IL-MCAM框架包括两个阶段:自动学习(AL)和交互性学习(IL)。在AL阶段,使用包含三种不同注意机制通道和卷积神经网络的多通道注意机制模型用于提取多通道特征进行分类。在IL阶段,提出的IL-MCAM框架不断地将错误分类的图像添加到交互式方法中,从而提高了MCAM模型的分类能力。我们在数据集上进行了比较实验,并在HE-NCT-CRC-100K数据集上进行了扩展实验,以验证拟议的IL-MCAM框架的性能,分别达到98.98%和99.77%的分类精度。此外,我们进行了消融实验和互换性实验,以验证三个通道的能力和互换性。实验结果表明,所提出的IL-MCAM框架在结直肠组织病理学图像分类任务中具有出色的性能。
In recent years, colorectal cancer has become one of the most significant diseases that endanger human health. Deep learning methods are increasingly important for the classification of colorectal histopathology images. However, existing approaches focus more on end-to-end automatic classification using computers rather than human-computer interaction. In this paper, we propose an IL-MCAM framework. It is based on attention mechanisms and interactive learning. The proposed IL-MCAM framework includes two stages: automatic learning (AL) and interactivity learning (IL). In the AL stage, a multi-channel attention mechanism model containing three different attention mechanism channels and convolutional neural networks is used to extract multi-channel features for classification. In the IL stage, the proposed IL-MCAM framework continuously adds misclassified images to the training set in an interactive approach, which improves the classification ability of the MCAM model. We carried out a comparison experiment on our dataset and an extended experiment on the HE-NCT-CRC-100K dataset to verify the performance of the proposed IL-MCAM framework, achieving classification accuracies of 98.98% and 99.77%, respectively. In addition, we conducted an ablation experiment and an interchangeability experiment to verify the ability and interchangeability of the three channels. The experimental results show that the proposed IL-MCAM framework has excellent performance in the colorectal histopathological image classification tasks.