论文标题

ABC(t) - 图:与连接和g $^$^$连接的中位数的图形中值过程的公理表征

ABC(T)-graphs: an axiomatic characterization of the median procedure in graphs with connected and G$^2$-connected medians

论文作者

Bénéteau, Laurine, Chalopin, Jérémie, Chepoi, Victor, Vaxès, Yann

论文摘要

中位功能是一个位置/共识函数,该功能将任何配置文件$π$(一个有限的顶点)映射到一组顶点,将距离总和从$π$最小化到顶点。中值函数满足几个简单的公理:匿名(a),s之间(b)和一致性(c)。 McMorris,Mulder,Novick and Powers(2015)将共识函数的ABC问题定义为表征图表的问题(称为ABC-Graphs),为之满足公理(a),(b)和(c)的唯一共识函数是中位功能。 在本文中,我们表明具有$ g^2 $连接的中位数(尤其是双方HELLY图)的模块化图是ABC图形。另一方面,在所有图中的中值功能(axioms(t)和(t $ _2 $))中的中位功能满足了一些简单的局部公理,这使我们能够表明所有具有连接中位数的图表(包括Helly图,中位数图,中位数图,Matroids的基础图,Matroids的基础图,甚至$δ$ -Matroids $ -Matroids $ abct $ abct $ - 以及benzens $ - 以及Benzen $ - 以及$ - 以及$ - 以及$ - 以及$ - 以及$ - 以及$ - 以及$ - 以及$ - 以及$ - 以及$ - 以及$ raphs $ - 以及benzen $ - 以及benzen $ caphs $ caphers $ caplient $ anderient。 McMorris等人(2015年)证明了满足配对属性的图形(在他们的论文中称为Intersecting Interval属性)是ABC图形。我们证明,配对属性的图形构成了双方HELLY图的适当子类,我们讨论了此类图的识别问题的复杂性状态。

The median function is a location/consensus function that maps any profile $π$ (a finite multiset of vertices) to the set of vertices that minimize the distance sum to vertices from $π$. The median function satisfies several simple axioms: Anonymity (A), Betweeness (B), and Consistency (C). McMorris, Mulder, Novick and Powers (2015) defined the ABC-problem for consensus functions on graphs as the problem of characterizing the graphs (called, ABC-graphs) for which the unique consensus function satisfying the axioms (A), (B), and (C) is the median function. In this paper, we show that modular graphs with $G^2$-connected medians (in particular, bipartite Helly graphs) are ABC-graphs. On the other hand, the addition of some simple local axioms satisfied by the median function in all graphs (axioms (T), and (T$_2$)) enables us to show that all graphs with connected median (comprising Helly graphs, median graphs, basis graphs of matroids and even $Δ$-matroids) are ABCT-graphs and that benzenoid graphs are ABCT$_2$-graphs. McMorris et al (2015) proved that the graphs satisfying the pairing property (called the intersecting-interval property in their paper) are ABC-graphs. We prove that graphs with the pairing property constitute a proper subclass of bipartite Helly graphs and we discuss the complexity status of the recognition problem of such graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源