论文标题

DAP-FL:联合学习通过自适应调整和安全聚合而繁荣

Dap-FL: Federated Learning flourishes by adaptive tuning and secure aggregation

论文作者

Chen, Qian, Wang, Zilong, Chen, Jiawei, Yan, Haonan, Lin, Xiaodong

论文摘要

联合学习(FL)是一种有吸引力且有希望的分布式机器学习范式,引发了人们对利用无处不在的移动设备上存储的大量数据的广泛兴趣。但是,传统的FL遭受资源异质性的严重遭受,因为计算和通信能力较弱的客户可能无法使用相同的本地培训超参数来完成本地培训。在本文中,我们提出了DAP-FL,这是一个深层确定性的政策梯度(DDPG)辅助自适应FL系统,在该系统中,所有资源异构客户通过本地部署的DDPG辅助适应性适应性超参数选择计划对当地学习率和本地培训时期进行了自适应调整。特别是,通过严格的数学证明证实了所提出的高参数选择方案的合理性。此外,由于在先前的研究中对自适应FL系统的安全考虑无意识,我们介绍了Paillier Cryptosystem,以安全和隐私的方式汇总本地模型。严格的分析表明,所提出的DAP-FL系统可以保证客户私人本地模型的安全性,以防止在广泛使用的诚实但诚实但有趣的参与者和Active Averseries Security Model模型中选择选定的plaintext攻击和选定的消息攻击。此外,通过巧妙而广泛的实验,提出的DAP-FL比常规FL达到了更高的全球模型预测准确性和更快的收敛速度,并且验证了调整后的本地训练超参数的全面性。更重要的是,实验结果还表明,所提出的DAP-FL比两种最先进的RL辅助FL方法具有更高的模型预测准确性,即比基于DDPG的FL高6.03%,比基于DQN的FL高7.85%。

Federated learning (FL), an attractive and promising distributed machine learning paradigm, has sparked extensive interest in exploiting tremendous data stored on ubiquitous mobile devices. However, conventional FL suffers severely from resource heterogeneity, as clients with weak computational and communication capability may be unable to complete local training using the same local training hyper-parameters. In this paper, we propose Dap-FL, a deep deterministic policy gradient (DDPG)-assisted adaptive FL system, in which local learning rates and local training epochs are adaptively adjusted by all resource-heterogeneous clients through locally deployed DDPG-assisted adaptive hyper-parameter selection schemes. Particularly, the rationality of the proposed hyper-parameter selection scheme is confirmed through rigorous mathematical proof. Besides, due to the thoughtlessness of security consideration of adaptive FL systems in previous studies, we introduce the Paillier cryptosystem to aggregate local models in a secure and privacy-preserving manner. Rigorous analyses show that the proposed Dap-FL system could guarantee the security of clients' private local models against chosen-plaintext attacks and chosen-message attacks in a widely used honest-but-curious participants and active adversaries security model. In addition, through ingenious and extensive experiments, the proposed Dap-FL achieves higher global model prediction accuracy and faster convergence rates than conventional FL, and the comprehensiveness of the adjusted local training hyper-parameters is validated. More importantly, experimental results also show that the proposed Dap-FL achieves higher model prediction accuracy than two state-of-the-art RL-assisted FL methods, i.e., 6.03% higher than DDPG-based FL and 7.85% higher than DQN-based FL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源