论文标题
Fermi-Dirac颗粒的空间均匀玻尔兹曼方程的平衡分类
Classification of equilibria for the spatially homogeneous Boltzmann equation for Fermi-Dirac particles
论文作者
论文摘要
事实证明,对于任何$ n \ ge 2 $的任何$ n $维速度空间,证明了Fermi-Dirac颗粒的空间均匀玻尔兹曼方程的平衡分类。在\ cite {lu2001}中以$ n = 3 $证明了相同的分类。现在,$ n \ ge 2 $的证明是基于最新结果,该结果是所有维度的欧几里得球的表征$ \ ge 2 $。
The classification of equilibria for the spatially homogeneous Boltzmann equation for Fermi-Dirac particles is proved for any $n$-dimensional velocity space with $n\ge 2$. The same classification has been proven in \cite{Lu2001} for $n=3$. Now the proof for $n\ge 2$ is based on a recent result on a characterization of Euclidean balls for all dimensions $\ge 2$.