论文标题
斑点统计数据参数图像的深度估计
Deep Estimation of Speckle Statistics Parametric Images
论文作者
论文摘要
定量超声(QUS)提供了有关组织特性的重要信息。 QUS参数图像可以通过将包络数据分为小的重叠贴片并计算不同的斑点统计信息(例如Nakagami的参数和k-Distribution(HK-Distribution))来形成QUS参数图像。计算出的QUS参数图像可能是错误的,因为补丁中只有几个独立的样本可用。另一个挑战是,假定斑块内的包络样品来自相同的分布,这一假设通常会违反,因为该组织通常不是同质的。在本文中,我们提出了一种基于卷积神经网络(CNN)的方法,以估算QUS参数图像而无需修补。我们构建一个从HK分布中采样的大数据集,其区域具有随机形状和QUS参数值。然后,我们使用众所周知的网络以多任务学习方式估算QUS参数。我们的结果证实,所提出的方法能够减少错误并改善QUS参数图像中的边界定义。
Quantitative Ultrasound (QUS) provides important information about the tissue properties. QUS parametric image can be formed by dividing the envelope data into small overlapping patches and computing different speckle statistics such as parameters of the Nakagami and Homodyned K-distributions (HK-distribution). The calculated QUS parametric images can be erroneous since only a few independent samples are available inside the patches. Another challenge is that the envelope samples inside the patch are assumed to come from the same distribution, an assumption that is often violated given that the tissue is usually not homogenous. In this paper, we propose a method based on Convolutional Neural Networks (CNN) to estimate QUS parametric images without patching. We construct a large dataset sampled from the HK-distribution, having regions with random shapes and QUS parameter values. We then use a well-known network to estimate QUS parameters in a multi-task learning fashion. Our results confirm that the proposed method is able to reduce errors and improve border definition in QUS parametric images.