论文标题
使用主题建模和聚类分析不同地区的民间故事
Analyzing Folktales of Different Regions Using Topic Modeling and Clustering
论文作者
论文摘要
本文采用两种主要的自然语言处理技术,即主题建模和聚类,在民间故事中找到模式,并揭示区域之间的文化关系。特别是,我们使用潜在的Dirichlet分配和伯托式分配来提取反复出现的元素,以及将K-均值聚类提取到集体民间故事。我们的论文试图回答这个问题,民间故事之间有什么相似之处,以及他们对文化的看法。在这里,我们表明民间故事之间的共同趋势是家庭,食物,传统性别角色,神话人物和动物。此外,民间故事主题的不同,基于地理位置的不同,在具有不同动物和环境的不同地区发现的民间故事。我们并不感到惊讶的是,宗教人物和动物是所有文化中的一些常见主题。但是,我们感到惊讶的是,欧洲和亚洲的民间故事经常结合在一起。我们的结果表明,世界各地文化中某些元素的普遍存在。我们预计我们的工作将成为对民间故事的未来研究的一种资源,也是使用自然语言处理来分析特定领域中文档的一个例子。此外,由于我们仅根据文件进行分析,因此可以在分析这些民间故事的结构,情感和特征方面做更多的工作。
This paper employs two major natural language processing techniques, topic modeling and clustering, to find patterns in folktales and reveal cultural relationships between regions. In particular, we used Latent Dirichlet Allocation and BERTopic to extract the recurring elements as well as K-means clustering to group folktales. Our paper tries to answer the question what are the similarities and differences between folktales, and what do they say about culture. Here we show that the common trends between folktales are family, food, traditional gender roles, mythological figures, and animals. Also, folktales topics differ based on geographical location with folktales found in different regions having different animals and environment. We were not surprised to find that religious figures and animals are some of the common topics in all cultures. However, we were surprised that European and Asian folktales were often paired together. Our results demonstrate the prevalence of certain elements in cultures across the world. We anticipate our work to be a resource to future research of folktales and an example of using natural language processing to analyze documents in specific domains. Furthermore, since we only analyzed the documents based on their topics, more work could be done in analyzing the structure, sentiment, and the characters of these folktales.