论文标题

维度18中的真实等线线和互补子图的雅各比身份

Real equiangular lines in dimension 18 and the Jacobi identity for complementary subgraphs

论文作者

Greaves, Gary R. W., Syatriadi, Jeven

论文摘要

我们表明,$ \ Mathbb r^{18} $中的等态线系统的最大基数最多是$ 59 $。我们的证明包括雅各比身份的新应用用于互补子图。特别是,我们表明,不存在其邻接矩阵具有特征性多项式$(x-22)(x-2)(x-2)^{42}(x+6)^{15}(x+8)^2 $的图。

We show that the maximum cardinality of an equiangular line system in $\mathbb R^{18}$ is at most $59$. Our proof includes a novel application of the Jacobi identity for complementary subgraphs. In particular, we show that there does not exist a graph whose adjacency matrix has characteristic polynomial $(x-22)(x-2)^{42} (x+6)^{15} (x+8)^2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源