论文标题
Deepverge:路边边缘生物多样性和保护潜力的分类
DeepVerge: Classification of Roadside Verge Biodiversity and Conservation Potential
论文作者
论文摘要
开放的太空草地越来越耕种或建造,导致针对路边边缘的保护工作逐渐增加。在该国500,000公里的道路上,大约有一半的英国草原物种可以在约91种的道路上找到威胁或几乎威胁。因此,仔细管理这些“野生动植物走廊”对于防止物种灭绝和维持草地栖息地的生物多样性至关重要。野生动植物信托经常获得志愿者的支持,以调查路边的边缘,并确定新的“当地野生动植物场所”是具有高保护潜力的地区。使用来自3,900公里的路边边缘的志愿者调查数据以及公开可用的街景图像,我们介绍Deepverge;一种基于深度学习的方法,可以通过检测阳性指标物种的存在来自动调查路边边缘的部分。 Deepverge使用来自林肯郡农村县的图像和地面真相调查数据的平均准确性为88%。地方当局可以使用这种方法来确定新的当地野生动植物地点,并根据法律和政府的政策义务一致,援助管理和环境规划,从而节省了数千个小时的体力劳动。
Open space grassland is being increasingly farmed or built upon, leading to a ramping up of conservation efforts targeting roadside verges. Approximately half of all UK grassland species can be found along the country's 500,000 km of roads, with some 91 species either threatened or near threatened. Careful management of these "wildlife corridors" is therefore essential to preventing species extinction and maintaining biodiversity in grassland habitats. Wildlife trusts have often enlisted the support of volunteers to survey roadside verges and identify new "Local Wildlife Sites" as areas of high conservation potential. Using volunteer survey data from 3,900 km of roadside verges alongside publicly available street-view imagery, we present DeepVerge; a deep learning-based method that can automatically survey sections of roadside verges by detecting the presence of positive indicator species. Using images and ground truth survey data from the rural county of Lincolnshire, DeepVerge achieved a mean accuracy of 88%. Such a method may be used by local authorities to identify new local wildlife sites, and aid management and environmental planning in line with legal and government policy obligations, saving thousands of hours of manual labour.