论文标题

带有免疫细胞标记物的深度放射素签名预测神经胶质瘤患者的存活率

Deep radiomic signature with immune cell markers predicts the survival of glioma patients

论文作者

Chaddad, Ahmad, Zhang, Paul Daniel Mingli, Rathore, Saima, Sargos, Paul, Desrosiers, Christian, Niazi, Tamim

论文摘要

成像生物标志物提供了一种无创的方法来预测治疗前免疫疗法的反应。在这项工作中,我们提出了一种从卷积神经网络(CNN)计算出的新型深度放射素特征(DRF),该特征捕获了与免疫细胞标记和整体生存有关的肿瘤特征。我们的研究使用四个MRI序列(T1加权,T1加权后对比后,T2加权和FLAIR),具有151例脑瘤患者的相应免疫细胞标记。提出的方法通过在MRI扫描的标记肿瘤区域内汇总了预训练的3D-CNN的激活图,从而提取了180个DRF。这些功能提供了编码组织异质性的区域纹理的紧凑而有力的表示。进行了一组全面的实验,以评估所提出的DRF和免疫细胞标记之间的关系,并衡量它们与整体生存的关联。结果表明,DRF和各种标记之间存在很高的相关性,以及根据这些标记分组的患者之间的显着差异。此外,将DRF,临床特征和免疫细胞标记组合为随机森林分类器的输入有助于区分短期和长期生存结果,AUC为72 \%,P = 2.36 $ \ times $ 10 $^{ - 5} $。这些结果证明了拟议的DRF作为非侵入性生物标志物在预测脑肿瘤患者的治疗反应中的有用性。

Imaging biomarkers offer a non-invasive way to predict the response of immunotherapy prior to treatment. In this work, we propose a novel type of deep radiomic features (DRFs) computed from a convolutional neural network (CNN), which capture tumor characteristics related to immune cell markers and overall survival. Our study uses four MRI sequences (T1-weighted, T1-weighted post-contrast, T2-weighted and FLAIR) with corresponding immune cell markers of 151 patients with brain tumor. The proposed method extracts a total of 180 DRFs by aggregating the activation maps of a pre-trained 3D-CNN within labeled tumor regions of MRI scans. These features offer a compact, yet powerful representation of regional texture encoding tissue heterogeneity. A comprehensive set of experiments is performed to assess the relationship between the proposed DRFs and immune cell markers, and measure their association with overall survival. Results show a high correlation between DRFs and various markers, as well as significant differences between patients grouped based on these markers. Moreover, combining DRFs, clinical features and immune cell markers as input to a random forest classifier helps discriminate between short and long survival outcomes, with AUC of 72\% and p=2.36$\times$10$^{-5}$. These results demonstrate the usefulness of proposed DRFs as non-invasive biomarker for predicting treatment response in patients with brain tumors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源