论文标题

使用机器学习技术从膝盖角度识别人类活动

Human Activity Recognition from Knee Angle Using Machine Learning Techniques

论文作者

Nazari, Farhad, Nahavandi, Darius, Mohajer, Navid, Khosravi, Abbas

论文摘要

人力活动识别(HAR)是许多适用于智能家居,监视,人类援助和医疗保健等许多应用的至关重要技术。这项技术利用模式识别,可以有助于开发对矫形系统和外骨骼等不同系统的人类控制。大多数报告的研究使用从实验中收集的小数据集用于特定目的。这种方法的弊端包括:1)很难将结果推广给具有不同生物力学特征和健康状况的不同人,以及2)在原始实验以外的应用中不能实施。为了解决这些缺陷,当前的研究使用用于培训机器学习(ML)算法的病理诊断目的的公开数据集进行了研究。进行不同练习的参与者的膝盖运动的数据集已用于对人类活动进行分类。这项研究中使用的算法是高斯天真的贝叶斯,决策树,随机森林,K-Nearest邻居投票,支持向量机和梯度提升。此外,将两种培训方法与原始数据(命名)和手动提取的功能进行了比较。结果显示了ROC曲线(AUC)指标下的面积的0.94表现,用于使用原始数据提高梯度增强算法的11倍交叉验证。该结果反映了此类数据集的拟议方法的有效性和潜在用途。

Human Activity Recognition (HAR) is a crucial technology for many applications such as smart homes, surveillance, human assistance and health care. This technology utilises pattern recognition and can contribute to the development of human-in-the-loop control of different systems such as orthoses and exoskeletons. The majority of reported studies use a small dataset collected from an experiment for a specific purpose. The downsides of this approach include: 1) it is hard to generalise the outcome to different people with different biomechanical characteristics and health conditions, and 2) it cannot be implemented in applications other than the original experiment. To address these deficiencies, the current study investigates using a publicly available dataset collected for pathology diagnosis purposes to train Machine Learning (ML) algorithms. A dataset containing knee motion of participants performing different exercises has been used to classify human activity. The algorithms used in this study are Gaussian Naive Bayes, Decision Tree, Random Forest, K-Nearest Neighbors Vote, Support Vector Machine and Gradient Boosting. Furthermore, two training approaches are compared to raw data (de-noised) and manually extracted features. The results show up to 0.94 performance of the Area Under the ROC Curve (AUC) metric for 11-fold cross-validation for Gradient Boosting algorithm using raw data. This outcome reflects the validity and potential use of the proposed approach for this type of dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源