论文标题
有限体积的光核的光谱
Spectrum of light nuclei in a finite volume
论文作者
论文摘要
具有物理夸克质量的多巴里族系统的晶格量子染色体动力学计算将开始核物理学的新时代。在有限的网格上执行,此类计算要求将其有限体积数值结果推断到自由空间的物理量。可以将这种物理信息的这种提取可以直接用于有效的现场理论(EFT),直接对有限体积的结果,也可以利用Lüscher自由空间公式或其概括将晶格数据推送到无限量。为了更好地了解周期性边界条件对少数核子系统结合能的影响,我们在这里探索了有限盒和自由空间中的物理质量的光核。随机变异方法用于求解少数体系统。引入了该方法的实质优化,以在周期框中启用有效的计算。通过优化的代码,我们在领先顺序无pionless eft中对光核$ a \ le 4 $进行准确的计算。我们使用Lüscher公式进行两体系统及其对3体和4体系统的概括,我们检查了盒子效应,并探讨了这些公式对所考虑的核系统的可能局限性。
Lattice quantum chromodynamics calculations of multi-baryon systems with physical quark masses would start a new age of ab initio predictions in nuclear physics. Performed on a finite grid, such calculations demand extrapolation of their finite volume numerical results to free-space physical quantities. Such extraction of the physical information can be carried out fitting effective field theories (EFTs) directly to the finite-volume results or utilizing the Lüscher free-space formula or its generalizations for extrapolating the lattice data to infinite volume. To understand better the effect of periodic boundary conditions on the binding energy of few nucleon systems we explore here light nuclei with physical masses in a finite box and in free space. The stochastic variational method is used to solve the few-body systems. Substantial optimizations of the method are introduced to enable efficient calculations in a periodic box. With the optimized code, we perform accurate calculations of light nuclei $A \le 4$ within leading order pionless EFT. Using Lüscher formula for the two-body system, and its generalization for 3- and 4-body systems, we examine the box effect and explore possible limitations of these formulas for the considered nuclear systems.