论文标题

性别和机器人:文学评论

Gender and Robots: A Literature Review

论文作者

Widder, David Gray

论文摘要

在这里,我询问我们可以了解性别如何影响人们如何与机器人互动的知识。我回顾了2018年或更早发布的46个社会机器人的经验研究,这些研究报告了其参与者的性别,机器人的感知或预期性别,或两者兼而有之,并对参与者或机器人性别进行了一些分析。从这些研究中,我发现机器人被视为男性,机器人吸收了人类的性别刻板印象,并且男性倾向于比女性更多地与机器人互动。我强调了关于年轻参与者中这种性别影响如何有何不同的开放问题,以及是否应该寻求将机器人的性别与参与者的性别相匹配,以确保积极的互动结果。 我的结论是建议未来的研究应:包括性别多样化的参与者池,包括非二进制参与者,依靠自我认同来辨别性别而不是研究人员的看法,控制性别的已知协变量,测试有关性​​别的不同研究结果,并测试参与者使用的机器人是否被视为性别。我包括一个附录,其中包含46篇论文中每一篇与性别相关的发现的叙述摘要,以帮助未来的文学评论。

Here, I ask what we can learn about how gender affects how people engage with robots. I review 46 empirical studies of social robots, published 2018 or earlier, which report on the gender of their participants or the perceived or intended gender of the robot, or both, and perform some analysis with respect to either participant or robot gender. From these studies, I find that robots are by default perceived as male, that robots absorb human gender stereotypes, and that men tend to engage with robots more than women. I highlight open questions about how such gender effects may be different in younger participants, and whether one should seek to match the gender of the robot to the gender of the participant to ensure positive interaction outcomes. I conclude by suggesting that future research should: include gender diverse participant pools, include non-binary participants, rely on self-identification for discerning gender rather than researcher perception, control for known covariates of gender, test for different study outcomes with respect to gender, and test whether the robot used was perceived as gendered by participants. I include an appendix with a narrative summary of gender-relevant findings from each of the 46 papers to aid in future literature reviews.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源