论文标题

A*NET:一种基于可扩展路径的知识图的推理方法

A*Net: A Scalable Path-based Reasoning Approach for Knowledge Graphs

论文作者

Zhu, Zhaocheng, Yuan, Xinyu, Galkin, Mikhail, Xhonneux, Sophie, Zhang, Ming, Gazeau, Maxime, Tang, Jian

论文摘要

大规模知识图上的推理长期以来一直由嵌入方法主导。尽管基于路径的方法具有嵌入缺乏的电感能力,但它们的可伸缩性受指数级数的限制。在这里,我们提出一个*Net,一种基于可扩展的路径的方法,用于知识图理论。受到最短路径问题的A*算法的启发,我们的A NET学习了优先级功能,可以在每次迭代时选择重要的节点和边缘,以减少培训和推理的时间和记忆足迹。可以指定选定节点和边缘的比率在性能和效率之间进行权衡。跨导态和感应知识图推理基准的实验表明,*网络通过现有的基于最新的路径方法实现竞争性能,而仅在每次迭代时访问10%节点和10%的边缘。在一个数百万级的数据集ogbl wikikg2上,一个*网不仅取得了新的最新结果,而且收敛的速度比嵌入方法更快。 *NET是在这种规模上进行知识图推理的第一个基于路径的方法。

Reasoning on large-scale knowledge graphs has been long dominated by embedding methods. While path-based methods possess the inductive capacity that embeddings lack, their scalability is limited by the exponential number of paths. Here we present A*Net, a scalable path-based method for knowledge graph reasoning. Inspired by the A* algorithm for shortest path problems, our A*Net learns a priority function to select important nodes and edges at each iteration, to reduce time and memory footprint for both training and inference. The ratio of selected nodes and edges can be specified to trade off between performance and efficiency. Experiments on both transductive and inductive knowledge graph reasoning benchmarks show that A*Net achieves competitive performance with existing state-of-the-art path-based methods, while merely visiting 10% nodes and 10% edges at each iteration. On a million-scale dataset ogbl-wikikg2, A*Net not only achieves a new state-of-the-art result, but also converges faster than embedding methods. A*Net is the first path-based method for knowledge graph reasoning at such scale.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源