论文标题

会员推理通过后卫

Membership Inference via Backdooring

论文作者

Hu, Hongsheng, Salcic, Zoran, Dobbie, Gillian, Chen, Jinjun, Sun, Lichao, Zhang, Xuyun

论文摘要

最近发布的数据隐私法规(例如GDPR(通用数据保护法规))授予个人被遗忘的权利。在机器学习的背景下,如果数据所有者的要求(即机器学习),这要求模型忘记培训数据样本。作为在机器学习之前的重要一步,数据所有者要确定未经授权的一方是否已经使用她的数据来训练机器学习模型仍然是一个挑战。会员推理是一种最近新兴的技术,可以确定是否使用数据样本来训练目标模型,并且似乎是解决这一挑战的有前途的解决方案。但是,由于最初是为攻击会员隐私而设计的,因此直接采用现有的会员推理方法无法有效应对挑战,并遭受了一些严重的限制,例如对良好的模型的推理准确性较低。在本文中,我们提出了一种新型的会员推理方法,灵感来自后门技术,以应对上述挑战。具体而言,我们通过后卫(MIB)的会员推理方法利用了一个关键观察,即在预测数据所有者创建的故意标记的样本时,后门模型的行为与干净的模型有很大不同。吸引人的是,MIB要求数据所有者标记少数用于会员推理的样本,并且仅对目标模型进行了黑框访问,并具有理论保证的推理结果。我们在各种数据集和深层神经网络体系结构上进行了广泛的实验,结果验证了方法的疗效,例如,仅标记0.1%的培训数据集以实现有效的会员推理就足够了。

Recently issued data privacy regulations like GDPR (General Data Protection Regulation) grant individuals the right to be forgotten. In the context of machine learning, this requires a model to forget about a training data sample if requested by the data owner (i.e., machine unlearning). As an essential step prior to machine unlearning, it is still a challenge for a data owner to tell whether or not her data have been used by an unauthorized party to train a machine learning model. Membership inference is a recently emerging technique to identify whether a data sample was used to train a target model, and seems to be a promising solution to this challenge. However, straightforward adoption of existing membership inference approaches fails to address the challenge effectively due to being originally designed for attacking membership privacy and suffering from several severe limitations such as low inference accuracy on well-generalized models. In this paper, we propose a novel membership inference approach inspired by the backdoor technology to address the said challenge. Specifically, our approach of Membership Inference via Backdooring (MIB) leverages the key observation that a backdoored model behaves very differently from a clean model when predicting on deliberately marked samples created by a data owner. Appealingly, MIB requires data owners' marking a small number of samples for membership inference and only black-box access to the target model, with theoretical guarantees for inference results. We perform extensive experiments on various datasets and deep neural network architectures, and the results validate the efficacy of our approach, e.g., marking only 0.1% of the training dataset is practically sufficient for effective membership inference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源