论文标题

封闭缸中热和泊松方程的准频谱求解器

A Quasi-Optimal Spectral Solver for the Heat and Poisson Equations in a Closed Cylinder

论文作者

Darrow, David

论文摘要

我们开发了一种光谱方法来解决封闭缸中的热方程,从而达到了准最佳$ \ Mathcal {o}(n \ log n)$复杂性和高阶,光谱精度。该算法依赖于Chebyshev-Chebyshev--审议(CCF)的离散化缸,该圆柱体很容易实施,并将热方程式分解为较小,稀疏的Sylvester方程的集合。反过来,在准最佳时间中使用交替方向隐式(ADI)方法来求解这些方程。总体而言,这代表了加热方程求解器的改进,从$ \ MATHCAL {O}(N^{4/3})$(在以前的Chebyshev方法中)到$ \ Mathcal {O}(n \ log n)$。尽管最近已经开发了基于Legendre的方法来实现相似的计算时间,但我们的Chebyshev离散化允许系数转换速度更快。我们通过概述了求解不可压缩的navier的光谱方法来证明这一点的应用 - 在准最佳时间中将圆柱体中的方程式stokations。最后,我们提供了热方程式的数值模拟,表明了对传统光谱搭配方法和有限差异方法的显着加速。

We develop a spectral method to solve the heat equation in a closed cylinder, achieving a quasi-optimal $\mathcal{O}(N\log N)$ complexity and high-order, spectral accuracy. The algorithm relies on a Chebyshev--Chebyshev--Fourier (CCF) discretization of the cylinder, which is easily implemented and decouples the heat equation into a collection of smaller, sparse Sylvester equations. In turn, each of these equations is solved using the alternating direction implicit (ADI) method in quasi-optimal time; overall, this represents an improvement in the heat equation solver from $\mathcal{O}(N^{4/3})$ (in previous Chebyshev-based methods) to $\mathcal{O}(N\log N)$. While Legendre-based methods have recently been developed to achieve similar computation times, our Chebyshev discretization allows for far faster coefficient transforms; we demonstrate the application of this by outlining a spectral method to solve the incompressible Navier--Stokes equations in the cylinder in quasi-optimal time. Lastly, we provide numerical simulations of the heat equation, demonstrating significant speed-ups over traditional spectral collocation methods and finite difference methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源