论文标题

使用机器学习的材料属性是必要和足够的,足以预测材料?

What Information is Necessary and Sufficient to Predict Materials Properties using Machine Learning?

论文作者

Tian, Siyu Isaac Parker, Walsh, Aron, Ren, Zekun, Li, Qianxiao, Buonassisi, Tonio

论文摘要

材料建模的常规智慧表明,化学成分和晶体结构在物理特性的预测中都是不可或缺的。但是,最近的发展通过仅使用构图来报告准确的物业预测机学习(ML)框架来挑战这一点,而无需了解当地的原子环境或远程顺序。为了探究这种行为,我们对仅基于组成与组成和结构特征的监督ML模型进行了系统的比较。使用两种模型的化合物都发现了相似的性能预测性能。我们假设组成嵌入了基层结构的结构信息,以支持以组成模型的构成预测和稳定化合物的逆设计。

Conventional wisdom of materials modelling stipulates that both chemical composition and crystal structure are integral in the prediction of physical properties. However, recent developments challenge this by reporting accurate property-prediction machine learning (ML) frameworks using composition alone without knowledge of the local atomic environments or long-range order. To probe this behavior, we conduct a systematic comparison of supervised ML models built on composition only vs. composition plus structure features. Similar performance for property prediction is found using both models for compounds close to the thermodynamic convex hull. We hypothesize that composition embeds structural information of ground-state structures in support of composition-centric models for property prediction and inverse design of stable compounds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源