论文标题

关于不均匀的Beltrami方程的​​边界价值问题

On boundary value problems for inhomogeneous Beltrami equations

论文作者

Gutlyanski\uı, V., Nesmelova, O., Ryazanov, V., Yakubov, E.

论文摘要

我们在此处给出了有关希尔伯特边界价值问题问题的存在,以所谓的角度极限(沿着无界曲线到边界的非倾斜曲线)为约旦域中的来源满足Quasihyyperbolic边界条件的beltrami方程,而没有$(通常是$ $ a),通常是$ $ $(通常是$ $)。锥条件是PDE理论中边界价值问题的标准条件。假设问题的系数是可计数界变化的函数,并且边界数据相对于对数能力是可衡量的,我们证明了问题的局部Hölder连续解决方案的存在。此外,我们证明了希尔伯特边界价值问题的相似结果,其任意可测量的边界数据以及沿Jordan弧的所谓一般Bagemihl-Seidel Systems的有限连接的Jordan域中的系数与其边界相似。用相同的术语,我们对已知的黎曼边界值问题的常规解(包括非线性)的存在制定定理,并具有非均匀的Beltrami方程的​​任意可测量系数。我们还通过带有来源的所谓广义分析函数来表示获得的解决方案。最后,我们针对各向异性和不均匀培养基中的水力力学(不可压缩流体的力学)在载体机械方程(不可压缩流体的力学)中为庞康省和诺伊曼问题制定了类似的结果。我们在这里通过所谓的广义谐波函数来代表其解决方案,并用来源描述ISO \ tro \ piC和均质介质中相应的物理过程。

We give here results on the existence of nonclassical solutions of the Hilbert boundary value problem in terms of the so-called angular limits (along nontangent curves to the boundary) for Beltrami equations with sources in Jordan domains satisfying the quasihyperbolic boundary condition by Gehring-Martio, generally speaking, without $(A)-$condition by Ladyzhenskaya-Ural'tseva and, in particular, without the known outer cone condition that were standard for boundary value problems in the PDE theory. Assuming that the coefficients of the problem are functions of countable bounded variation and the boundary data are measurable with respect to the logarithmic capacity, we prove the existence of locally Hölder continuous solutions of the problem. Moreover, we prove similar results on the Hilbert boundary value problem with its arbitrary measurable boundary data as well as coefficients in finitely connected Jordan domains along the so-called general Bagemihl-Seidel systems of Jordan arcs to their boundaries. In the same terms, we formulate theorems on the existence of regular solutions of the known Riemann boundary value problems, including nonlinear, with arbitrary measurable coefficients for the nonhomogeneous Beltrami equations. We give also the representation of obtained solutions through the so-called generalized analytic functions with sources. Finally, we formulate similar results on Poincare and Neumann problems for the Poisson type equations that are main in hydromechanics (mechanics of incompressible fluids) in anisotropic and inhomogeneous media. We give here the representation of their solutions through the so-called generalized harmonic functions with sources that describe the corresponding physical processes in iso\-tro\-pic and homogeneous media.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源