论文标题

基于接口变形的不确定性下耦合计算力学模型的贝叶斯校准

Bayesian calibration of coupled computational mechanics models under uncertainty based on interface deformation

论文作者

Willmann, Harald, Nitzler, Jonas, Brandstaeter, Sebastian, Wall, Wolfgang A.

论文摘要

校准或参数识别与与观察到的模型过程的数据相关的计算力学模型使用,以找到模型参数,从而实现模型预测和观察之间的良好相似性。当没有材料点的位移数据时,我们基于界面的测量变形,为计算力学中的表面耦合问题提供了一种贝叶斯校准方法。与确定性模型校准相比,将这种校准问题解释为统计推断问题,在计算上更强大,并且使分析师能够在可能的解决方案上找到后验分布,而不是单点估计。所提出的框架还可以考虑每个实验中存在的不可避免的不确定性,并有望在模型校准过程中发挥重要作用。为了减轻昂贵的远期模型评估的计算成本,我们建议通过使用高斯流程回归的大量平行模拟来学习对数类样函数。我们介绍并专门研究了参考数据和仿真之间三种不同差异测量的影响。我们表明,基于统计学的差异度量导致最表现力的后验分布。我们进一步将方法应用于较高模型参数维度中的数值示例,并在不确定性下解释所得的后验。在示例中,我们研究了生物膜中流体结构相互作用效应的耦合多物理模型,并发现模型参数以耦合方式影响结果。

Calibration or parameter identification is used with computational mechanics models related to observed data of the modeled process to find model parameters such that good similarity between model prediction and observation is achieved. We present a Bayesian calibration approach for surface coupled problems in computational mechanics based on measured deformation of an interface when no displacement data of material points is available. The interpretation of such a calibration problem as a statistical inference problem, in contrast to deterministic model calibration, is computationally more robust and allows the analyst to find a posterior distribution over possible solutions rather than a single point estimate. The proposed framework also enables the consideration of unavoidable uncertainties that are present in every experiment and are expected to play an important role in the model calibration process. To mitigate the computational costs of expensive forward model evaluations, we propose to learn the log-likelihood function from a controllable amount of parallel simulation runs using Gaussian process regression. We introduce and specifically study the effect of three different discrepancy measures for deformed interfaces between reference data and simulation. We show that a statistically based discrepancy measure results in the most expressive posterior distribution. We further apply the approach to numerical examples in higher model parameter dimensions and interpret the resulting posterior under uncertainty. In the examples, we investigate coupled multi-physics models of fluid-structure interaction effects in biofilms and find that the model parameters affect the results in a coupled manner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源