论文标题

在优化中检测精确和近似Hessian矩阵的负特征值

Detecting negative eigenvalues of exact and approximate Hessian matrices in optimization

论文作者

Hare, Warren, Royer, Clément W.

论文摘要

非convex最小化算法通常受益于使用Hessian Matrix表示的二阶信息。当临界点的Hessian具有负特征值时,相应的特征向量可用于寻找目标函数值的进一步改善。计算此类本本件可能具有挑战性,尤其是如果不能直接构建Hessian矩阵本身,而是必须进行采样或近似。在BlackBox优化中,这种衍生近似值是在功能值方面的巨大成本。 在本文中,我们研究了在没有访问完整矩阵的黑森矩阵中检测出负特征值的实用方法。我们提出了一个从对角线开始的一般框架,并逐渐构建一个子膜以检测负曲率。至关重要的是,当确切的Hessian坐标值可用时,以及近似Hessian坐标值时,我们的方法既起作用。我们将框架的几个实例比较了来自流行优化库的Hessian矩阵的测试集,并进行了有限差异近似。我们的实验强调了问题描述中可变顺序的重要性,并表明形成子膜通常是检测负曲率的有效方法。

Nonconvex minimization algorithms often benefit from the use of second-order information as represented by the Hessian matrix. When the Hessian at a critical point possesses negative eigenvalues, the corresponding eigenvectors can be used to search for further improvement in the objective function value. Computing such eigenpairs can be computationally challenging, particularly if the Hessian matrix itself cannot be built directly but must rather be sampled or approximated. In blackbox optimization, such derivative approximations are built at a significant cost in terms of function values. In this paper, we investigate practical approaches to detect negative eigenvalues in Hessian matrices without access to the full matrix. We propose a general framework that begins with the diagonal and gradually builds submatrices to detect negative curvature. Crucially,our approach works both when exact Hessian coordinate values are available and when Hessian coordinate values are approximated. We compare several instances of our framework on a test set of Hessian matrices from a popular optimization library, and finite-differences approximations thereof. Our experiments highlight the importance of the variable order in the problem description, and show that forming submatrices is often an efficient approach to detect negative curvature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源