论文标题

在扩展的圆形图上优化措施的复杂性低

Low complexity of optimizing measures over an expanding circle map

论文作者

Gao, Rui, Shen, Weixiao

论文摘要

在本文中,我们证明,对于实际的分析扩展圆图,除非电势共同出现到恒定,否则所有对真实分析势函数的优化度量均具有零熵。我们使用符号空间的组结构来解决涉及的横向问题。我们还讨论了优化通用平滑电势措施和Lyapunov优化措施的应用。

In this paper, we prove that for real analytic expanding circle maps, all optimizing measures of a real analytic potential function have zero entropy, unless the potential is cohomologous to constant. We use the group structure of the symbolic space to solve a transversality problem involved. We also discuss applications to optimizing measures for generic smooth potentials and to Lyapunov optimizing measures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源