论文标题
在扩展的圆形图上优化措施的复杂性低
Low complexity of optimizing measures over an expanding circle map
论文作者
论文摘要
在本文中,我们证明,对于实际的分析扩展圆图,除非电势共同出现到恒定,否则所有对真实分析势函数的优化度量均具有零熵。我们使用符号空间的组结构来解决涉及的横向问题。我们还讨论了优化通用平滑电势措施和Lyapunov优化措施的应用。
In this paper, we prove that for real analytic expanding circle maps, all optimizing measures of a real analytic potential function have zero entropy, unless the potential is cohomologous to constant. We use the group structure of the symbolic space to solve a transversality problem involved. We also discuss applications to optimizing measures for generic smooth potentials and to Lyapunov optimizing measures.