论文标题

凸出的几何形状可用颜色代表,飞机上的椭圆形,而圆圈不可能

Convex geometries representable with colors, by ellipses on the plane, and impossible by circles

论文作者

Adaricheva, Kira, Daisy, Evan, Garg, Ayush, King, Zachary, Ma, Grace, Olson, Michelle, Raanes, Cat, Thompson, James

论文摘要

凸几何形状是满足反交换特性的封闭系统。在K. Adaricheva和M. Bolat(2016)和Polymath REU 2020团队的工作之后,本文继续调查凸几何形式的5元素基础集合。它引入了几个属性:相反的属性,嵌套的三角形属性,Q属性和分离属性,是平面上圆形几何形状的分离属性,从而阻止了5个元素基集中众多凸的几何形状的表示形式。它还表明,正如附录中给出的所有672个凸的几何形状均具有椭圆形的表示,如圆圈所没有已知代表的人,并引入了一种通过定义单个谓词来扩展圆形表示的方法,显示为颜色。

A convex geometry is a closure system satisfying the anti-exchange property. This paper, following the work of K. Adaricheva and M. Bolat (2016) and the Polymath REU 2020 team, continues to investigate representations of convex geometries on a 5-element base set. It introduces several properties: the opposite property, nested triangle property, area Q property, and separation property, of convex geometries of circles on a plane, preventing this representation for numerous convex geometries on a 5-element base set. It also demonstrates that all 672 convex geometries on a 5-element base set have a representation by ellipses, as given in the appendix for those without a known representation by circles, and introduces a method of expanding representation with circles by defining unary predicates, shown as colors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源