论文标题

基于混合级分布指标的语义一致性特征对象检测模型

A Semantic Consistency Feature Alignment Object Detection Model Based on Mixed-Class Distribution Metrics

论文作者

Gou, Lijun, Yang, Jinrong, Yu, Hangcheng, Wang, Pan, Li, Xiaoping, Deng, Chao

论文摘要

在各种计算机视觉任务(例如对象检测,实例分段等)中,无监督的域适应至关重要。他们试图减少域偏差诱导的性能下降,同时也促进模型应用速度。域适应对象检测中的先前作品试图使图像级和实例级别的变化对齐,以最终使域差异最小化,但是它们可能使单级特征与图像级域适应中的混合类特征保持一致,因为对象检测任务中的每个图像可能是一个类和对象。为了通过单级比对获得单级和混合级对齐的混合级,我们将特征的混合级视为新班级,并提出混合级$ h-Divergence $以进行对象检测,以实现同质特征对齐并减少负转移。然后,还提出了基于混合级$ h-Divergence $的语义一致性特征对齐模型(SCFAM)。为了改善单层和混合级的语义信息并完成语义分离,SCFAM模型提出了语义预测模型(SPM)和语义桥接组件(SBC)。然后根据SPM结果更改PIX域鉴别器损耗的重量,以减少样品不平衡。广泛使用的数据集上的广泛的无监督域自适应实验说明了我们所提出的方法在域偏置设置中的可靠对象检测。

Unsupervised domain adaptation is critical in various computer vision tasks, such as object detection, instance segmentation, etc. They attempt to reduce domain bias-induced performance degradation while also promoting model application speed. Previous works in domain adaptation object detection attempt to align image-level and instance-level shifts to eventually minimize the domain discrepancy, but they may align single-class features to mixed-class features in image-level domain adaptation because each image in the object detection task may be more than one class and object. In order to achieve single-class with single-class alignment and mixed-class with mixed-class alignment, we treat the mixed-class of the feature as a new class and propose a mixed-classes $H-divergence$ for object detection to achieve homogenous feature alignment and reduce negative transfer. Then, a Semantic Consistency Feature Alignment Model (SCFAM) based on mixed-classes $H-divergence$ was also presented. To improve single-class and mixed-class semantic information and accomplish semantic separation, the SCFAM model proposes Semantic Prediction Models (SPM) and Semantic Bridging Components (SBC). And the weight of the pix domain discriminator loss is then changed based on the SPM result to reduce sample imbalance. Extensive unsupervised domain adaption experiments on widely used datasets illustrate our proposed approach's robust object detection in domain bias settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源