论文标题
统一的增强学习方法,数量响应平衡和两人零和游戏
A Unified Approach to Reinforcement Learning, Quantal Response Equilibria, and Two-Player Zero-Sum Games
论文作者
论文摘要
这项工作研究了一种算法,我们称之为磁性镜下降,该算法是受镜下降和非欧几里得近端梯度算法的启发的。我们的贡献是证明了磁性镜下降的优点,既是平衡求解器,又是在两人零和游戏中的加强学习方法。这些优点包括:1)成为第一个具有一阶反馈的广泛形式游戏的线性收敛的均衡求解器; 2)是在表格设置中使用CFR实现经验竞争结果的第一个标准增强学习算法; 3)在3x3黑暗六角形和幻影tic-tac-toe中取得了良好的表现,作为一种自我扮演的深钢筋学习算法。
This work studies an algorithm, which we call magnetic mirror descent, that is inspired by mirror descent and the non-Euclidean proximal gradient algorithm. Our contribution is demonstrating the virtues of magnetic mirror descent as both an equilibrium solver and as an approach to reinforcement learning in two-player zero-sum games. These virtues include: 1) Being the first quantal response equilibria solver to achieve linear convergence for extensive-form games with first order feedback; 2) Being the first standard reinforcement learning algorithm to achieve empirically competitive results with CFR in tabular settings; 3) Achieving favorable performance in 3x3 Dark Hex and Phantom Tic-Tac-Toe as a self-play deep reinforcement learning algorithm.