论文标题

公平部门具有双面偏好

Fair Division with Two-Sided Preferences

论文作者

Igarashi, Ayumi, Kawase, Yasushi, Suksompong, Warut, Sumita, Hanna

论文摘要

我们研究了一个公平的部门环境,其中参与者将在团队之间进行公平分布,在该团队中,团队不仅像在规范公平部门的环境中一样具有比参与者的偏好,而且参与者对团队也有偏好。我们专注于为团队提供最多一位参与者(EF1)的嫉妒性,并为双方都有稳定条件。我们表明,即使团队可能对参与者具有正值或负值,始终存在满足EF1,掉期稳定性和个人稳定性的分配,并且可以在多项式时间内计算。当团队的参与者具有非负值时,我们证明存在EF1和Pareto最佳分配,如果估值是二进制的,则可以在多项式时间中找到。我们还表明,EF1和合理的无嫉妒分配不一定存在,并且决定是否存在这种分配在计算上很难。

We study a fair division setting in which participants are to be fairly distributed among teams, where not only do the teams have preferences over the participants as in the canonical fair division setting, but the participants also have preferences over the teams. We focus on guaranteeing envy-freeness up to one participant (EF1) for the teams together with a stability condition for both sides. We show that an allocation satisfying EF1, swap stability, and individual stability always exists and can be computed in polynomial time, even when teams may have positive or negative values for participants. When teams have nonnegative values for participants, we prove that an EF1 and Pareto optimal allocation exists and, if the valuations are binary, can be found in polynomial time. We also show that an EF1 and justified envy-free allocation does not necessarily exist, and deciding whether such an allocation exists is computationally difficult.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源