论文标题

高维贝叶斯优化具有约束:施用粉末称重

High-Dimensional Bayesian Optimization with Constraints: Application to Powder Weighing

论文作者

Miyagawa, Shoki, Yano, Atsuyoshi, Sawada, Naoko, Ogawa, Isamu

论文摘要

贝叶斯优化有效地优化了黑盒问题中的参数。但是,在有限的试验中,该方法对于高维参数不起作用。通过非线性将其嵌入低维空间,可以有效地探索参数。但是,不能考虑约束。我们提出了将参数分解组合到非线性嵌入中,以考虑在高维贝叶斯优化中考虑已知的平等和未知不平等约束。我们将提出的方法应用于粉末称重任务,作为使用情况。基于实验结果,与手动参数调整相比,提出的方法考虑了约束,并将试验数量减少约66%。

Bayesian optimization works effectively optimizing parameters in black-box problems. However, this method did not work for high-dimensional parameters in limited trials. Parameters can be efficiently explored by nonlinearly embedding them into a low-dimensional space; however, the constraints cannot be considered. We proposed combining parameter decomposition by introducing disentangled representation learning into nonlinear embedding to consider both known equality and unknown inequality constraints in high-dimensional Bayesian optimization. We applied the proposed method to a powder weighing task as a usage scenario. Based on the experimental results, the proposed method considers the constraints and contributes to reducing the number of trials by approximately 66% compared to manual parameter tuning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源