论文标题

besov Wavefront集

Besov Wavefront Set

论文作者

Dappiaggi, Claudio, Rinaldi, Paolo, Sclavi, Federico

论文摘要

我们开发了一个旨在在傅立叶空间中表征的波前集合的概念。分布在特定BESOV空间的元素中表现的方向。随后,我们证明了使用伪差异操作员的语言对这种波前的替代表征。两种公式都用于证明主要的潜在结构特性。在其中,我们强调了足够的标准的个性化,可以用规定的Besov波前集乘以分布,该套件涵盖了古典Young的定理和概括。最后,作为这个新框架的应用,我们证明了一大群双曲线操作员的奇异性定理。

We develop a notion of wavefront set aimed at characterizing in Fourier space the directions along which a distribution behaves or not as an element of a specific Besov space. Subsequently we prove an alternative, albeit equivalent characterization of such wavefront set using the language of pseudo-differential operators. Both formulations are used to prove the main underlying structural properties. Among these we highlight the individuation of a sufficient criterion to multiply distributions with a prescribed Besov wavefront set which encompasses and generalizes the classical Young's theorem. At last, as an application of this new framework we prove a theorem of propagation of singularities for a large class of hyperbolic operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源