论文标题
1,3-二甲基咪唑醛离子液与水的分子动力学模拟研究
Molecular dynamics simulation studies of 1,3-dimethyl imidazolium nitrate ionic liquid with water
论文作者
论文摘要
对离子液体与水的分子间相互作用的基本理解代表了预测离子液体特性的重要程度。研究了分子间或非共价相互作用,用于1,3-二甲基咪唑[DMIM]+阳离子和硝酸盐[NO3] - 使用水,采用量子力学(QM)和分子动力学(MD)模拟的阴离子。首先,使用各种理论和基集来查明二聚体优化的几何形状,并在气相中估算结合能,对分子二聚体进行了广泛的电子结构计算。许多计算产生了使用6-311 ++ g(d,p)基集的阳离子 - 阳离子和阴离子 - 水对的平面二聚体几何形状。与使用Moller-Plesset二阶扰动理论(MP2)获得的能量相比,分散校正的交换相关功能对所有测试对的所有测试对产生了更有利的结合能。接下来,使用经过修订的多极极化力场(PFF)进行了分子动力学模拟。根据热力学特性评估了水对离子液体的影响。热力学特性包括液体密度,过量的摩尔体积和液体结构G(R)作为水浓度的函数。离子液 - 水混合物的密度单调降低,同时增加了水的浓度。对于低水浓度,表明水与离子液体成分的强分子间相互作用获得了负多余体积。离子液体 - 水混合物的液体结构表明,当水浓度升高时,阴离子在短分子间距离处与阳离子相互作用。
The fundamental understanding of intermolecular interactions of ionic liquids with water represents a vital extent in predicting ionic liquid properties. Intermolecular or noncovalent interactions were studied for 1,3-dimethyl imidazolium [DMIM]+ cation and nitrate [NO3]- anion with water, employing quantum mechanics (QM) and molecular dynamics (MD) simulations. Extensive electronic structure calculations were performed first for molecular dimers, using various levels of theory and basis sets to pinpoint dimer optimized geometries and estimate binding energies in the gas phase. Many calculations resulted in planar dimer geometries for the cation-anion and anion-water pairs using 6-311++G(d,p) basis set. Dispersion corrected exchange correlation functionals resulted in more favorable binding energies for all tested pairs in comparison with energies obtained using Moller-Plesset second order perturbation theory (MP2). Molecular dynamics simulations were performed next using a revised multipolar polarizable force field (PFF). The effect of water on ionic liquids was evaluated in terms of thermodynamic properties. Thermodynamic properties included liquid densities, excess molar volumes, and liquid structures g(r) as a function of water concentration. Densities of ionic liquid-water mixtures monotonically decrease while increasing the concentration of water. A negative excess volume is obtained for low water concentrations demonstrating strong intermolecular interactions of water with ionic liquid components. Liquid structures of ionic liquid - water mixtures revealed a tendency for anions to interact with cations at shorter intermolecular distances when water concentration is increased.