论文标题

通过高分辨率成像和原子模拟阐明氮化钛的核心结构

Elucidating dislocation core structures in titanium nitride through high-resolution imaging and atomistic simulations

论文作者

Salamania, J., Sangiovanni, D. G., Kraych, A., Kwick, K. M. Calamba, Schramm, I. C., Johnson, L. J. S., Boyd, R., Bakhit, B., Hsu, T. W., Mrovec, M., Rogström, L., Tasnádi, F., Abrikosov, I. A., Odén, M.

论文摘要

尽管氮化钛(TIN)是最广泛研究和彻底表征的薄膜陶瓷材料之一,但缺乏有关相关脱位核心结构的详细知识。通过外延单晶(001)面向的锡膜的高分辨率扫描透射电子显微镜(Stem),我们确定了不同的位错类型及其核心结构。其中包括,除了预期的主要A/2 {110} <1 $ \ bar {1} $ 0>脱位外,Shockley Partial Drocations A/6 {111} <11 $ \ bar {2} $> {2} $>和SESSILE LOMER EDGE EDGE EDGERITACT A/2 {100} <011> <011>。密度功能理论和经典的原子间潜在模拟通过恢复不同位错类型的原子结构,估算PEIERLS应力并提供有关核心化学键合性的见解,从而补充了茎的观察。脱位核心的生成模型表明,局部增强的金属金属键,弱的Ti-N键和n空缺键固定,可有效降低{110} <1 $ \ bar {1} $ 0>> and> and {111}和{111} <11 $ \ bar {2} $> {2} $> thipocations的迁移率。我们的发现强调了,应在纳米级和锡的宏观特性的设计和解释中考虑存在不同的错类型及其对化学键的影响。

Although titanium nitride (TiN) is among the most extensively studied and thoroughly characterized thin-film ceramic materials, detailed knowledge of relevant dislocation core structures is lacking. By high-resolution scanning transmission electron microscopy (STEM) of epitaxial single crystal (001)-oriented TiN films, we identify different dislocation types and their core structures. These include, besides the expected primary full a/2{110}<1$\bar{1}$0> dislocation, Shockley partial dislocations a/6{111}<11$\bar{2}$> and sessile Lomer edge dislocations a/2{100}<011>. Density-functional theory and classical interatomic potential simulations complement STEM observations by recovering the atomic structure of the different dislocation types, estimating Peierls stresses, and providing insights on the chemical bonding nature at the core. The generated models of the dislocation cores suggest locally enhanced metal-metal bonding, weakened Ti-N bonds, and N vacancy-pinning that effectively reduces the mobilities of {110}<1$\bar{1}$0> and {111}<11$\bar{2}$> dislocations. Our findings underscore that the presence of different dislocation types and their effects on chemical bonding should be considered in the design and interpretations of nanoscale and macroscopic properties of TiN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源