论文标题
要了解清晰度最小化
Towards Understanding Sharpness-Aware Minimization
论文作者
论文摘要
清晰感最小化(SAM)是一种最近的训练方法,它依赖于最严重的重量扰动,可显着改善各种环境中的概括。我们认为,基于pac-bayes概括结合的SAM成功的现有理由,而收敛到平面最小值的想法是不完整的。此外,没有解释说在SAM中使用$ M $ -SHARPNESS的成功,这对于概括至关重要。为了更好地理解SAM的这一方面,我们理论上分析了其对角线性网络的隐式偏差。我们证明,SAM始终选择一种比标准梯度下降更好的解决方案,用于某些类别的问题,并且通过使用$ m $ -sharpness可以放大这种效果。我们进一步研究了隐性偏见在非线性网络上的特性,在经验上,我们表明使用SAM进行微调的标准模型可以导致显着的概括改进。最后,当与随机梯度一起使用时,我们为非凸目标提供了SAM的收敛结果。我们从经验上说明了深层网络的这些结果,并讨论了它们与SAM的概括行为的关系。我们的实验代码可从https://github.com/tml-epfl/understanding-sam获得。
Sharpness-Aware Minimization (SAM) is a recent training method that relies on worst-case weight perturbations which significantly improves generalization in various settings. We argue that the existing justifications for the success of SAM which are based on a PAC-Bayes generalization bound and the idea of convergence to flat minima are incomplete. Moreover, there are no explanations for the success of using $m$-sharpness in SAM which has been shown as essential for generalization. To better understand this aspect of SAM, we theoretically analyze its implicit bias for diagonal linear networks. We prove that SAM always chooses a solution that enjoys better generalization properties than standard gradient descent for a certain class of problems, and this effect is amplified by using $m$-sharpness. We further study the properties of the implicit bias on non-linear networks empirically, where we show that fine-tuning a standard model with SAM can lead to significant generalization improvements. Finally, we provide convergence results of SAM for non-convex objectives when used with stochastic gradients. We illustrate these results empirically for deep networks and discuss their relation to the generalization behavior of SAM. The code of our experiments is available at https://github.com/tml-epfl/understanding-sam.