论文标题
关于希尔伯特的第十个问题和椭圆曲线的伊瓦沙瓦理论的评论
Remarks on Hilbert's tenth problem and the Iwasawa theory of elliptic curves
论文作者
论文摘要
让$ e $成为一个椭圆曲线,在数字$ k $上呈正等级,而让$ p $是一个奇数的质量。令$ k_ {cyc} $为cyclotomic $ \ mathbb {z} _p $ - $ k $的extension $ k $和$ k_n $表示其$ n $ the layer。 Mordell - $ e $的WEEL等级在$ K $的环形塔中是恒定的,如果对于所有$ n $,$ e(k_n)$的排名等于$ e(k)$的排名。我们在伊瓦川理论中应用技术,以在上述意义上获得椭圆曲线等级的明确条件。然后,我们向希尔伯特(Hilbert)第十个问题的潜在应用指出了数字环。
Let $E$ be an elliptic curve with positive rank over a number field $K$ and let $p$ be an odd prime number. Let $K_{cyc}$ be the cyclotomic $\mathbb{Z}_p$-extension of $K$ and $K_n$ denote its $n$-th layer. The Mordell--Weil rank of $E$ is said to be constant in the cyclotomic tower of $K$ if for all $n$, the rank of $E(K_n)$ is equal to the rank of $E(K)$. We apply techniques in Iwasawa theory to obtain explicit conditions for the rank of an elliptic curve to be constant in the above sense. We then indicate the potential applications to Hilbert's tenth problem for number rings.