论文标题

ARF:艺术辐射场

ARF: Artistic Radiance Fields

论文作者

Zhang, Kai, Kolkin, Nick, Bi, Sai, Luan, Fujun, Xu, Zexiang, Shechtman, Eli, Snavely, Noah

论文摘要

我们提出了一种将任意样式图像的艺术特征转移到3D场景的方法。在点云或网格上执行3D风格的先前方法对复杂的现实世界场景的几何重建错误敏感。取而代之的是,我们建议对更健壮的辐射场字段表示。我们发现,常用的基于克矩阵的损失倾向于在没有忠实笔触的情况下产生模糊的结果,并引入了最近的基于邻居的损失,该损失非常有效地捕获样式的细节,同时保持多视图一致性。我们还提出了一种新颖的递延后传播方法,以使用在全分辨率渲染图像上定义的样式损失来优化记忆密集型辐射场。我们广泛的评估表明,我们的方法通过产生与样式图像更相似的艺术外观来优于基线。请检查我们的项目页面以获取视频结果和开源实现:https://www.cs.cornell.edu/projects/arf/。

We present a method for transferring the artistic features of an arbitrary style image to a 3D scene. Previous methods that perform 3D stylization on point clouds or meshes are sensitive to geometric reconstruction errors for complex real-world scenes. Instead, we propose to stylize the more robust radiance field representation. We find that the commonly used Gram matrix-based loss tends to produce blurry results without faithful brushstrokes, and introduce a nearest neighbor-based loss that is highly effective at capturing style details while maintaining multi-view consistency. We also propose a novel deferred back-propagation method to enable optimization of memory-intensive radiance fields using style losses defined on full-resolution rendered images. Our extensive evaluation demonstrates that our method outperforms baselines by generating artistic appearance that more closely resembles the style image. Please check our project page for video results and open-source implementations: https://www.cs.cornell.edu/projects/arf/ .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源