论文标题
重新审视皮肤皮肤病变分类深度学习的形状偏见
Revisiting the Shape-Bias of Deep Learning for Dermoscopic Skin Lesion Classification
论文作者
论文摘要
人们普遍认为,人类视觉系统偏向于识别形状而不是纹理。这一假设导致了越来越多的工作,旨在使深层模型的决策过程与人类视力的基本特性保持一致。人们对形状特征的依赖主要预计将在协变量转移下提高这些模型的鲁棒性。在本文中,我们重新审视了形状偏置对皮肤病变图像分类的重要性。我们的分析表明,不同的皮肤病变数据集对单个图像特征表现出不同的偏见。有趣的是,尽管深层提取器倾向于学习皮肤病变分类的纠缠特征,但仍然可以通过这种纠缠的表示可以解码个体特征。这表明这些功能仍在模型的学习嵌入空间中表示,但不用于分类。此外,不同数据集的光谱分析表明,与常见的视觉识别相反,皮肤皮肤病变分类本质上依赖于超出形状偏置的复杂特征组合。自然的结果,在某些情况下,摆脱了形状偏见模型的普遍欲望甚至可以改善皮肤病变分类器。
It is generally believed that the human visual system is biased towards the recognition of shapes rather than textures. This assumption has led to a growing body of work aiming to align deep models' decision-making processes with the fundamental properties of human vision. The reliance on shape features is primarily expected to improve the robustness of these models under covariate shift. In this paper, we revisit the significance of shape-biases for the classification of skin lesion images. Our analysis shows that different skin lesion datasets exhibit varying biases towards individual image features. Interestingly, despite deep feature extractors being inclined towards learning entangled features for skin lesion classification, individual features can still be decoded from this entangled representation. This indicates that these features are still represented in the learnt embedding spaces of the models, but not used for classification. In addition, the spectral analysis of different datasets shows that in contrast to common visual recognition, dermoscopic skin lesion classification, by nature, is reliant on complex feature combinations beyond shape-bias. As a natural consequence, shifting away from the prevalent desire of shape-biasing models can even improve skin lesion classifiers in some cases.