论文标题

对外国贸易官方统计的新型重建攻击,巴西案例研究

A novel reconstruction attack on foreign-trade official statistics, with a Brazilian case study

论文作者

Favato, Danilo Fabrino, Coutinho, Gabriel, Alvim, Mário S., Fernandes, Natasha

论文摘要

在本文中,我们描述,正式化,实施和实验评估了针对巴西官方外国贸易统计数据的新型交易重新识别攻击。攻击的目标是重新识别外国交易的进口商(通过揭示执行该交易的公司的身份),因此违反了这些进口商的财政保密(通过揭示敏感信息:交易商品的价值和数量)。我们使用定量信息流(QIF)中的原理提供了此财政保密问题的数学形式化,然后仔细地确定用作攻击中用作辅助信息的官方数据发布中的主要不重点的主要来源,并模型交易重建为线性优化问题,可通过Integer Linearearmeal(ILP)(ILP)进行线性优化问题。我们表明,此问题是NP完整的,并提供了一种方法来识别可处理实例。我们通过执行2,003次交易重新认同,总额超过1.37亿美元,并影响348家巴西公司,从而体现了攻击的可行性。此外,由于其他统计机构也产生了类似的统计数据,因此我们的攻击更加广泛。

In this paper we describe, formalize, implement, and experimentally evaluate a novel transaction re-identification attack against official foreign-trade statistics releases in Brazil. The attack's goal is to re-identify the importers of foreign-trade transactions (by revealing the identity of the company performing that transaction), which consequently violates those importers' fiscal secrecy (by revealing sensitive information: the value and volume of traded goods). We provide a mathematical formalization of this fiscal secrecy problem using principles from the framework of quantitative information flow (QIF), then carefully identify the main sources of imprecision in the official data releases used as auxiliary information in the attack, and model transaction re-construction as a linear optimization problem solvable through integer linear programming (ILP). We show that this problem is NP-complete, and provide a methodology to identify tractable instances. We exemplify the feasibility of our attack by performing 2,003 transaction re-identifications that in total amount to more than \$137M, and affect 348 Brazilian companies. Further, since similar statistics are produced by other statistical agencies, our attack is of broader concern.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源