论文标题
在瑞利极限内随机分布的球形腔的孔弹性介质中声波的有效性能
Effective properties of acoustic waves in a poroelastic medium containing spherical cavities randomly distributed within the Rayleigh limit
论文作者
论文摘要
研究了随机分布的无限扩展的孔隙弹性弹性弹性介质中声波的传播。使用密封的孔边界条件以低频极限计算散射系数。同样在此限制下,提出了使用显式水手 - 特鲁尔(WT)公式和林顿 - 马丁蛋白(LM)公式对毛孔弹性培养基的概括,提出了相干波的波数的表达式。有效的质量密度和模量的表达源自WT公式。当孔隙率趋于零时,在弹性介质中的相干波的有效特性作为限制情况。
The propagation of acoustic waves in a poro-elastic medium of infinite extension containing spherical cavities randomly distributed is investigated. The scattering coefficients are computed in the low frequency limit using the sealed pore boundary conditions. Also in this limit, using explicit Waterman-Truell (WT) formulas and a generalization of the Linton-Martin (LM) formula to poro-elastic medium, expressions of the wave numbers of the coherent waves are proposed. Expressions of the effective mass densities and moduli are derived from the WT formulas. The effective properties of the coherent wave in an elastic medium are obtained as a limiting case when the porosity tends towards zero.