论文标题

在定期驱动的相互作用的自旋晶格中,受对称保护的拓扑角模式

Symmetry-protected topological corner modes in a periodically driven interacting spin lattice

论文作者

Koor, Kelvin, Bomantara, Raditya Weda, Kwek, Leong Chuan

论文摘要

周期性驾驶在没有静态对应物的情况下产生异国情调阶段的悠久声誉。这项工作探讨了周期性驾驶,交互作用效应和$ \ mathbb {z} _2 $对称性之间的相互作用,从而在简单但有见地的二维旋转1/2晶格中导致Floquet Symmetry受保护的二阶拓扑阶段的出现。通过分析和数值处理的结合,我们验证了0和$π$模式的形成,即角落本地化的$ \ mathbb {z} _2 $对称损坏的损坏的操作员,这些破碎的运算符分别通过一个perriod时间进化器进行通勤和反强度。我们通过证明它们在广泛的参数值中的存在并在特殊条件下明确推导其相关的拓扑不变性,从而进一步验证了这些模式的拓扑性质。最后,我们提出了一种在实验中检测此类模式的特征并讨论缺陷效果的方法。

Periodic driving has the longstanding reputation for generating exotic phases of matter with no static counterparts. This work explores the interplay among periodic driving, interaction effects, and $\mathbb{Z}_2$ symmetry that leads to the emergence of Floquet symmetry protected second-order topological phases in a simple but insightful two-dimensional spin-1/2 lattice. Through a combination of analytical and numerical treatments, we verify the formation of 0 and $π$ modes, i.e., corner localized $\mathbb{Z}_2$ symmetry broken operators that respectively commute and anticommute with the one-period time evolution operator. We further verify the topological nature of these modes by demonstrating their presence over a wide range of parameter values and explicitly deriving their associated topological invariants under special conditions. Finally, we propose a means to detect the signature of such modes in experiments and discuss the effect of imperfections.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源