论文标题
一种基于神经网络的能源管理系统,用于基于光伏电池的微电网
A Neural Network-Based Energy Management System for PV-Battery Based Microgrids
论文作者
论文摘要
本文提出了一种基于神经网络的能源管理系统(NN-EMS),该系统针对由多个基于PV的分布发电机(DG)喂养的岛的AC微电网。随机且不平等的辐照导致PV输出不等,这会导致DGS电池中的电荷最佳(SOC)。随着时间的流逝,这种效果可能导致SOC的差异大大增加,从而导致一些电池达到其SOC极限。这些电池将不再能够控制混合网格形成DG的直流链接。提出的NN-EMS通过使用最佳功率流(OPF)的输出学习最佳的状态映射来确保SOC平衡。培训数据集是通过考虑实用的生成负载配置文件来执行基于下垂的岛微电网的混合企业线性编程OPF来生成的。最终的NN-EMS控制器继承了最佳状态和网络行为的信息。与传统的时间预集中方法相比,提出的策略不需要准确的生成载荷预测。此外,它还可以在近实时响应PV功率的变化,而无需求助于解决OPF。拟议的NN-EMS控制器已通过案例研究对含有PV触发杂种DGS的CIGRE LV微电网进行了验证。拟议的概念也可以扩展到合成的分散控制器的合成,这些控制器可以在没有沟通的情况下进行全球目标进行合作。
A neural network-based energy management system (NN-EMS) has been proposed in this paper for islanded ac microgrids fed by multiple PV-battery based distributed generators (DG). The stochastic and unequal irradiation results in unequal PV output, which causes an unequal state-of-charge (SoC) among the batteries of the DGs. This effect may cause the difference in the SoCs to increase considerably over time, leading to some batteries reaching their SoC limits. These batteries would no longer be able to control the dc-link of the hybrid grid forming DG. The proposed NN-EMS ensures SoC balancing by learning an optimal state-action mapping using the outputs of an optimal power flow (OPF). The training dataset has been generated by executing a mixed-integer linear programming based OPF for droop-based island microgrids considering a practical generation-load profile. The resultant NN-EMS controller inherits the information of optimal states and the network behaviour. Compared to traditional time-ahead centralized methods, the proposed strategy does not require accurate generation-load forecasting. Further, it can also respond to the variations in the PV power in near-real-time without resorting to solving an OPF. The proposed NN-EMS controller has been validated by case studies on a CIGRE LV microgrid containing PV-battery hybrid DGs. The proposed concept can also be extended to synthesize decentralized controllers that can cooperate among themselves to achieve a global objective without communication.