论文标题

由布朗运动驱动的多尺度系统的中等偏差原理

Moderate deviation principle for multiscale systems driven by fractional Brownian motion

论文作者

Bourguin, Solesne, Dang, Thanh, Spiliopoulos, Konstantinos

论文摘要

在本文中,我们研究了慢速随机动力学系统的中等偏差原理(MDP),在该系统中,慢动作由小的分数布朗运动(FBM)控制,并带有Hurst参数$ h \ in(1/2,1)$。我们在MDP所持的中等偏差缩放和Hurst参数$ H $上得出条件。此外,我们表明,在典型情况下,$ h = 1/2 $的$ H $中所产生的动作功能是不连续的,这表明FBM扰动的随机动力学系统的尾巴行为与标准Brownian Motion扰动的此类系统的尾巴行为不同。

In this paper we study the moderate deviations principle (MDP) for slow-fast stochastic dynamical systems where the slow motion is governed by small fractional Brownian motion (fBm) with Hurst parameter $H\in(1/2,1)$. We derive conditions on the moderate deviations scaling and on the Hurst parameter $H$ under which the MDP holds. In addition, we show that in typical situations the resulting action functional is discontinuous in $H$ at $H=1/2$, suggesting that the tail behavior of stochastic dynamical systems perturbed by fBm can have different characteristics than the tail behavior of such systems that are perturbed by standard Brownian motion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源