论文标题

建筑障碍对二维晶格材料弹性响应的影响

Effect of architecture disorder on the elastic response of two-dimensional lattice materials

论文作者

Montiel, Antoine, Nguyen, Thuy, Rountree, Cindy, Geertsen, Valérie, Guenoun, Patrick, Bonamy, Daniel

论文摘要

我们研究了无序的关节位置如何通过二维束网络中的数值模拟来影响晶格材料的线性弹性行为。选择了三种不同的初始晶体几何形状作为机械各向同性材料的代表,低连通性,机械的各向同性材料具有高连接性,以及具有中间连通性的机械各向异性材料。引入障碍会在局部(关节)量表的弹性张量中产生空间波动。适当的粗粒揭示了定义明确的连续性尺度弹性张量。增加的疾病有助于使最初各向同性材料更加各向同性。疾病对材料刚度的影响取决于晶格的连通性:增加疾病以高连通性软化,并使连通性低的晶格变硬,而无需改变弹性模量和密度之间的尺度(高连通性和立方体缩放的线性缩放,以使低连通性)。具有中间固定连通性的晶格中引入障碍均显示出缩放:线性缩放是针对低密度,高密度的立方​​体进行的,并且交叉密度随障碍而增加。与经典配方相反,这项工作表明连通性不是控制弹性模量缩放的唯一参数。它提供了一条有前途的途径,可以通过使体系结构混乱来访问晶格材料中的新型机械性能。

We examine how disordering joint position influences the linear elastic behavior of lattice materials via numerical simulations in two-dimensional beam networks. Three distinct initial crystalline geometries are selected as representative of mechanically isotropic materials low connectivity, mechanically isotropic materials with high connectivity, and mechanically anisotropic materials with intermediate connectivity. Introducing disorder generates spatial fluctuations in the elasticity tensor at the local (joint) scale. Proper coarse-graining reveals a well-defined continuum-level scale elasticity tensor. Increasing disorder aids in making initially anisotropic materials more isotropic. The disorder impact on the material stiffness depends on the lattice connectivity: Increasing the disorder softens lattices with high connectivity and stiffens those with low connectivity, without modifying the scaling between elastic modulus and density (linear scaling for high connectivity and cubic scaling for low connectivity). Introducing disorder in lattices with intermediate fixed connectivity reveals both scaling: the linear scaling occurs for low density, the cubic one at high density, and the crossover density increases with disorder. Contrary to classical formulations, this work demonstrates that connectivity is not the sole parameter governing elastic modulus scaling. It offers a promising route to access novel mechanical properties in lattice materials via disordering the architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源