论文标题
在可证明的稳健元基利斯优化方面
On Provably Robust Meta-Bayesian Optimization
论文作者
论文摘要
贝叶斯优化(BO)已成为黑框函数的顺序优化的流行。当BO用于优化目标函数时,我们通常可以访问对潜在相关功能的先前评估。这就提出了一个问题,即我们是否可以通过元学习(Meta-BO)来利用这些以前的经验来加速当前的BO任务,同时确保稳健性抵抗可能破坏BO融合的潜在有害不同的任务。本文介绍了两种可扩展且可证明的稳健元算法:鲁棒的元高斯过程 - 加工置信度结合(RM-GP-UCB)和RM-GP-thompson采样(RM-GP-TS)。我们证明,即使某些或所有以前的任务与当前的任务不同,这两种算法在渐近上都是无重组的,并且表明RM-GP-UCB比RM-GP-TS具有更好的理论鲁棒性。我们还利用理论保证,通过通过在线学习最大程度地减少遗憾,优化分配给各个任务的权重,从而减少了相似任务的影响,从而进一步增强了稳健性。经验评估表明,(a)RM-GP-UCB在各种应用中都有效,一致地性能,(b)RM-GP-TS在理论上和实践中在某些方案中具有竞争性的竞争性,但在某些方面具有较不相似的任务,并且在计算方面效率更高,尽管在理论上和实践中,在理论上和实践中都具有竞争力的效果。
Bayesian optimization (BO) has become popular for sequential optimization of black-box functions. When BO is used to optimize a target function, we often have access to previous evaluations of potentially related functions. This begs the question as to whether we can leverage these previous experiences to accelerate the current BO task through meta-learning (meta-BO), while ensuring robustness against potentially harmful dissimilar tasks that could sabotage the convergence of BO. This paper introduces two scalable and provably robust meta-BO algorithms: robust meta-Gaussian process-upper confidence bound (RM-GP-UCB) and RM-GP-Thompson sampling (RM-GP-TS). We prove that both algorithms are asymptotically no-regret even when some or all previous tasks are dissimilar to the current task, and show that RM-GP-UCB enjoys a better theoretical robustness than RM-GP-TS. We also exploit the theoretical guarantees to optimize the weights assigned to individual previous tasks through regret minimization via online learning, which diminishes the impact of dissimilar tasks and hence further enhances the robustness. Empirical evaluations show that (a) RM-GP-UCB performs effectively and consistently across various applications, and (b) RM-GP-TS, despite being less robust than RM-GP-UCB both in theory and in practice, performs competitively in some scenarios with less dissimilar tasks and is more computationally efficient.