论文标题

时间多模式多元学习

Temporal Multimodal Multivariate Learning

论文作者

Park, Hyoshin, Darko, Justice, Deshpande, Niharika, Pandey, Venktesh, Su, Hui, Ono, Masahiro, Barkely, Dedrick, Folsom, Larkin, Posselt, Derek, Chien, Steve

论文摘要

我们介绍了时间多模式的多模式学习,这是一个新的决策模型系列,可以间接地从一个峰值到一个峰值或一个以上的结果变量从一个时间阶段到另一个峰值的概率分布同时了解和传输在线信息。我们通过基于数据生理学驱动的相关性依次删除不同变量和时间之间的其他不确定性来近似后验,以解决不确定性下的更广泛的挑战性时间依赖性决策问题。对现实世界数据集的广泛实验(即,城市交通数据和飓风整体预测数据)证明了拟议的有针对性决策的卓越性能,而不是各种设置的最先进的基线预测方法。

We introduce temporal multimodal multivariate learning, a new family of decision making models that can indirectly learn and transfer online information from simultaneous observations of a probability distribution with more than one peak or more than one outcome variable from one time stage to another. We approximate the posterior by sequentially removing additional uncertainties across different variables and time, based on data-physics driven correlation, to address a broader class of challenging time-dependent decision-making problems under uncertainty. Extensive experiments on real-world datasets ( i.e., urban traffic data and hurricane ensemble forecasting data) demonstrate the superior performance of the proposed targeted decision-making over the state-of-the-art baseline prediction methods across various settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源