论文标题

调查:AMR到文本的神经网络

A Survey : Neural Networks for AMR-to-Text

论文作者

Hao, Hongyu, Li, Guangtong, Hu, Zhiming, Wang, Huafeng

论文摘要

AMR到文本是NLP社区中旨在从抽象含义表示(AMR)图生成句子的关键技术之一。自2013年提出AMR以来,有关AMR到文本的研究越来越普遍,因为AMR作为自然语言的高级语义描述,AMR的独特优势是结构化数据的重要分支。在本文中,我们简要介绍了AMR到文本。首先,我们介绍了此技术的当前情况,并指出了它的困难。其次,基于先前研究中使用的方法,我们根据它们各自的机制将它们大致分为五个类别,即基于规则的,基于seq-seq,基于图形,基于图形,基于变压器,基于变压器和预训练的语言模型(PLM)。特别是,我们详细介绍了基于神经网络的方法,并介绍了AMR到文本的最新进展,该方法指的是AMR重建,解码器优化等。此外,我们介绍了AMR-TOXT的基准和评估方法。最终,我们提供了当前技术和未来研究的前景的摘要。

AMR-to-text is one of the key techniques in the NLP community that aims at generating sentences from the Abstract Meaning Representation (AMR) graphs. Since AMR was proposed in 2013, the study on AMR-to-Text has become increasingly prevalent as an essential branch of structured data to text because of the unique advantages of AMR as a high-level semantic description of natural language. In this paper, we provide a brief survey of AMR-to-Text. Firstly, we introduce the current scenario of this technique and point out its difficulties. Secondly, based on the methods used in previous studies, we roughly divided them into five categories according to their respective mechanisms, i.e., Rules-based, Seq-to-Seq-based, Graph-to-Seq-based, Transformer-based, and Pre-trained Language Model (PLM)-based. In particular, we detail the neural network-based method and present the latest progress of AMR-to-Text, which refers to AMR reconstruction, Decoder optimization, etc. Furthermore, we present the benchmarks and evaluation methods of AMR-to-Text. Eventually, we provide a summary of current techniques and the outlook for future research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源