论文标题
半月板的几何结构壁上的吸附和吸附
Meniscus osculation and adsorption on geometrically structured walls
论文作者
论文摘要
我们研究了简单的流体在平滑结构化的,完全湿的壁上的吸附,并表明半月板悬浮型过渡发生时,当局部抛物线区域的曲率的拉普拉斯和几何半径重合时。从宏观上讲,悬浮型的转变为分数,$ 7/2 $,订单并分开吸附为显微镜的机制,仅包含薄润湿层和介镜,其中半月形存在。我们开发了一种缩放理论,用于由于薄润湿层而导致过渡的圆形,并得出了关键的指数关系,从而决定了界面高度尺度如何与曲率的几何半径。与Rascón和Parry提出的一般几何结构的联系。我们的预测由微观模型密度功能理论(DFT)支持,用于在正弦形的硬壁上干燥,在那里我们确认了过渡的顺序,也确认了由于厄普顿引起的广义触点定理的确切总和规则。我们表明,随着批量共存接近吸附等温线分为三个制度:一种前温度,它是微观的,仅包含一个薄润湿层,一种介质状态,弯月面在槽内,最后是液体界面的液态界面界面与cr insface inface inface interface inface insfore cormints cromints crominds insface interface inface。
We study the adsorption of simple fluids at smoothly structured, completely wet, walls and show that a meniscus osculation transition occurs when the Laplace and geometrical radii of curvature of locally parabolic regions coincide. Macroscopically, the osculation transition is of fractional, $7/2$, order and separates regimes in which the adsorption is microscopic, containing only a thin wetting layer, and mesoscopic, in which a meniscus exists. We develop a scaling theory for the rounding of the transition due to thin wetting layers and derive critical exponent relations that determine how the interfacial height scales with the geometrical radius of curvature. Connection with the general geometric construction proposed by Rascón and Parry is made. Our predictions are supported by a microscopic model density functional theory (DFT) for drying at a sinusoidally shaped hard-wall where we confirm the order of the transition and also an exact sum-rule for the generalized contact theorem due to Upton. We show that as bulk coexistence is approached the adsorption isotherm separates into three regimes: a pre-osculation regime where it is microscopic, containing only a thin wetting layer, a mesoscopic regime, in which a meniscus sits within the troughs, and finally another microscopic regime where the liquid-gas interface unbinds from the crests of the substrate.