论文标题
协作知识图融合通过利用开放语料库
Collaborative Knowledge Graph Fusion by Exploiting the Open Corpus
论文作者
论文摘要
为了减轻从头开始构建知识图(KG)的挑战,更一般的任务是使用开放式语料库中的三元组丰富一个kg,那里获得的三元组包含嘈杂的实体和关系。在保持知识代表的质量的同时,以新收获的三元组丰富一个公斤,这是一项挑战。本文提出了一个系统,使用从附加语料库中收集的信息来完善kg。为此,我们将任务制定为两个耦合子任务,即加入事件提取(JEE)和知识图融合(KGF)。然后,我们提出了一个协作知识图融合框架,以允许我们的子任务以交替的方式相互协助。更具体地说,探险家进行了由地面注释和主管提供的现有KG监督的JEE。然后,主管评估了探险家提取的三元组,并用高度排名的人来丰富KG。为了实施此评估,我们进一步提出了一种翻译的关系一致性评分机制,以对齐并将提取的三元组对齐为先前的KG。实验验证了这种合作既可以提高JEE和KGF的性能。
To alleviate the challenges of building Knowledge Graphs (KG) from scratch, a more general task is to enrich a KG using triples from an open corpus, where the obtained triples contain noisy entities and relations. It is challenging to enrich a KG with newly harvested triples while maintaining the quality of the knowledge representation. This paper proposes a system to refine a KG using information harvested from an additional corpus. To this end, we formulate our task as two coupled sub-tasks, namely join event extraction (JEE) and knowledge graph fusion (KGF). We then propose a Collaborative Knowledge Graph Fusion Framework to allow our sub-tasks to mutually assist one another in an alternating manner. More concretely, the explorer carries out the JEE supervised by both the ground-truth annotation and an existing KG provided by the supervisor. The supervisor then evaluates the triples extracted by the explorer and enriches the KG with those that are highly ranked. To implement this evaluation, we further propose a Translated Relation Alignment Scoring Mechanism to align and translate the extracted triples to the prior KG. Experiments verify that this collaboration can both improve the performance of the JEE and the KGF.